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Abstract. In recent decades, literatures about visible vertical cavity surface emitting lasers
(VCSELs) have been reported. However, due to high optical loss in the cavity, lasing from
deep ultraviolet (DUV) VCSEL was still rarely achieved. The optical loss in nitride DUV micro-
cavity was analyzed in detail. DUV nitride vertical Fabry–Pérot microcavity with active layer of
AlGaN-based quantum dots and double-side HfO2∕SiO2 distributed bragger reflectors was fab-
ricated. Optical losses with of the order of 103 cm−1 were deduced from theQ value of the cavity
modes. The main origination of optical loss in DUV cavity was calculated and ascribed to the
interface scattering. The interface roughness appearing after laser lift-off process and overlap
between rough interface and standing optical wave were two key parameters that contributed
to interface scattering loss. We believe that our results will provide useful information for
improving DUV VCSEL devices. © 2018 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JNP.12.043504]
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1 Introduction

AlxGa1−xN alloys, with its direct bandgap ranging from 3.4 to 6.0 eV by adjusting Al concen-
tration,1 have attracted a lot of attention for its promising application in high density optical
storage, water sterilization, biological detection, and photolithography. In the last few decades,
AlGaN-based deep ultraviolet (DUV) edge-emitting lasers from 214 to 368.4 nm have been
demonstrated.2–14

Comparing with edge-emitting lasers, DUV vertical cavity surface emitting lasers (VCSELs)
own many advantages, such as low power consumption, large-scale two-dimensional (2-D) array
feasibility, single longitudinal mode, and circular far-field beam.15 The development of DUV
VCSELs will benefit extensive applications in high resolution photolithography, biological dis-
infection, medical therapy, data communication, etc. VCSELs were proposed by Iga et al.,16–18

and initially obtained near 1.2 μm in 1979 at 77 K.19 In recent years, VCSELs have been suc-
cessfully progressed to blue and green spectrums using III-nitride semiconductors.20–26 However,
there were rare literatures about VCSELs operating in the UV regime,27–30 and none has reported
in the DUV (<320 nm) range. Distributed Bragg reflector (DBR) structure is one of the most
essential modules in DUV VCSELs fabrication. One typical VCSEL structure was based on the
active epilayer grown on bottom nitride DBR and followed by top dielectric or nitride DBR.28,30

However, the nitride DBR generally suffered by small refractive index contrast and narrow
reflectivity bandwidth. To get necessary reflectivity (>99%), extremely high period number
of nitride DBR (>40 pairs) was needed. This increases the difficulty in material growth and
fabrication of DUV VCSELs. By contrast, double-side dielectric DBR structures, with larger
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refractive index contrast between two oxide layers, are therefore more preferable. However, dou-
ble-side dielectric DBR structures introduced complex and delicate laser lift-off (LLO) process,
making devices suffered severe optical loss. Optical loss was a key problem in DUV VCSELs.
Large optical loss brings unaffordable high lasing threshold or even no lasing action.

In this work, we analyzed the optical loss in nitride DUV vertical microcavity based on
double-side dielectric DBRs. The intrinsic originations of optical loss were identified. Four dis-
crete cavity modes from 305 nm to 335 nm were observed. Optical losses of DUV cavity modes
were analyzed to be in the 103 cm−1 range. Theoretical calculation shows that the scattering loss
from the interface by laser lift-off is the main cause for cavity loss, which was strongly related to
the interface roughness and the overlap between rough interface and stationary optical field.

2 Experiment Details

The AlGaN quantum dots (QDs) epilayer was grown on c-plane sapphire substrate by molecular
beam epitaxy (MBE) in a RIBER 32 P reactor, following the growth conditions described in
Ref. 31. As shown in Fig. 1(a), the 30 nm GaN layer and 120 nm AlN layer were used as buffer
layers. The active layer consists of ten monolayers of Al0.2Ga0.8N quantum dots sandwiched by
Al0.7Ga0.3N barrier layers. Fabrication of the vertical microcavity was then carried out with the
first step of coating 15 pairs of HfO2∕SiO2 bottom-DBR on the top of epilayer. The peak reflec-
tivity (98.01%) and bandwidth (∼70 nm) of our oxide DBR were superior to the ones of nitride
DBR.30 After that, the bottom DBR side of sample was wax bonded to a quartz glass. LLO was
sequentially performed with a 248-nm KrF excimer laser to remove the sapphire substrate.
During the LLO process, the 30-nm GaN buffer layer was decomposed into melted Ga and
nitrogen gas. The molten Ga was then dissolved by diluted hydrochloric acid. After that,
a 10.5 pairs of HfO2∕SiO2 top-DBR, with a peak reflectivity of 96.81% and bandwidth of
69 nm, were deposited on the exposed AlN layer. Photoluminescence (PL) measurements
were performed using the 266-nm Nd:YAG laser as pumping source. The schematic diagram
of the PL set-up is depicted in Fig. 1(c).

3 Results and Discussion

The PL results are depicted in Fig. 2. Four cavity modes are clearly observed at 305, 314, 323,
and 335 nm. Interval among these modes is around 10 nm. The quality factor (Q value) of every
mode can be calculated according to Eq. (1):

Fig. 1 (a) Structure of the DUV epilayer; (b) fabrication processes of DUV vertical cavity; and
(c) PL set-up used in this study.
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EQ-TARGET;temp:intralink-;e001;116;541Q ¼ λ0∕Δλ; (1)

where λ0 is the peak wavelength of the emission mode and Δλ is full width of half maximum
of peak.

The Q values of DUV cavity modes were small compared with visible ones,32 indicating
strong optical losses in the cavity. These optical losses can be deduced from Q according to
Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;459Q ¼ 2π
nLeff

λ

�
1

ln ðRb_DBRRt_DBRÞ−1∕2 þ Leffα

�
; (2)

where n is the cavity refractive index, Leff is the effective cavity length, λ is the wavelength,
α is the internal cavity loss, and Rt_DBR and Rb_DBR are the top and bottom DBR reflectivity,
respectively. The effective cavity length Leff can be obtained from Eq. (3):

EQ-TARGET;temp:intralink-;e003;116;377vqþ1 − vq ¼
c

2nLeff

; (3)

where q is the longitudinal mode order, ν is the longitudinal mode frequency, and c is the vacuum
light velocity. Leff was evaluated to be 2288 nm. Therefore, the cavity losses of every mode were
2671.8, 3421.9, 2102.5, and 2363.5 cm−1 for the 305, 314, 323, and 335 nm modes, respectively
(Table 1). The cavity loss strongly affects the quality of cavity. If the cavity loss was reduced to
195 cm−1, the Q value will reach 1500.

Figure 3 depicts the simulated stationary optical field distributions of each mode along with
the refractive index profile. The confinement factors (Γr) are obtained by Eq. (4):

EQ-TARGET;temp:intralink-;e004;116;252Γr ¼
Leff

da

R
da
jEðzÞj2dzR

Leff
jEðzÞj2dz ; (4)

where da is active region thickness, EðzÞ is the electric field intensity along the z axis, and Γr

represents the coupling strength between active gain medium with standing wave. A Γr value

Fig. 2 Emission spectra of the microcavity at room temperature.

Table 1 Q values, cavity losses, and confinement factors of every cavity mode.

Mode (nm) 305 314 323 335

Q value 166.58 127.32 194.79 160.78

α (cm−1) 2671.8 3421.9 2102.5 2363.5

Γr 1.71 1.89 1.88 1.62
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close to 2 suggests that the active region is perfectly aligned to the antinode of the cavity mode,
making the most efficient coupling between gain medium and optical field. In our sample, the
QD layer was artificially placed at the antinode of stationary optical field, showing confinement
factor close to 2 (Table 1).

Meanwhile, the optical loss was also a significant parameter in DUV microcavity. Several
factors including epilayer absorption, interface scattering, and DBR reflectivity contribute to the
total optical loss. First, the Al0.7Ga0.3N epilayer absorption was calculated based on absorption
coefficient of 0.45 × 103 cm−1 at 320 nm:33

EQ-TARGET;temp:intralink-;e005;116;439Aepi ¼ 1 − e−αepid; (5)

where αepi is the absorption coefficient and d is the layer thickness. The absorbance by the thick-
ness of the epilayer was calculated and found to be 8.4%.

Second, the interface scattering was also a pivotal character in total optical loss. The interface
morphology of the AlN epilayer after LLO was characterized by atomic force microscopy, as
shown in Fig. 4(a). Over a 10 μm × 10 μm area, the interface was pretty rough with root mean

Fig. 3 Simulated stationary optical field distribution and refractive index profile in DUV cavity.

Fig. 4 (a) Atomic force microscopy image of AlN interface after LLO; (b) enlarged schematic
overlap between rough interface and stationary optical field; and (c) schematic image of energy
loss per single round trip.
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square (RMS) roughness of 20.36 nm. The integrated scattering coefficient (ISC), i.e., the ratio
between scattered and incident light intensity can be described as in Eq. (6):34

EQ-TARGET;temp:intralink-;e006;116;711ISC ¼ C

�
1 − exp

�
−
�
4πδ cos θ

λ

�
2
��

; (6)

where δ is the RMS of the interface, θ is the incident angle, λ is wavelength, and C is a correction
factor. When light travels from epilayer to DBR, C is 0.96. If light travels from the opposite
direction, C will be 1∕0.96 ¼ 1.04. For normal incidence (θ ¼ 0), the ISC from epilayer to DBR
for the 305, 314, 323, and 335-nm modes is 49%, 47%, 45%, and 42%, respectively, whereas
ISC′ from DBR to epilayer is 53%, 51%, 49%, and 46%, respectively. Compared with epilayer
absorption of 8.4%, the interface scattering loss (42% to 53%) dominated the cavity losses.

Meanwhile, it is worth noting that the interface scattering was also related to the overlap
coefficient (β) between rough interface and stationary optical field. As shown in Fig. 4(b),
the overlap coefficient was the coupling strength of the optical field with the interface roughness
and could be expressed by

EQ-TARGET;temp:intralink-;e007;116;547β ¼
R dr
0 jEðxÞj2∕jEmaxj2 dx

dr
; (7)

where dr is the thickness of rough interface and was assumed to be the RMS value of 20.36 nm;
jEðxÞj2 and jEmaxj2 are the electric fields along the thickness direction and maximum electric
amplitude in the cavity, respectively.

The total optical loss Atotal of all cavity modes in single round trip can be deduced by con-
sidering the average β, ISC, and ISC′ when light travels from the starting point S [Fig. 4(c)].
Atotal is given by Eq. (8):

EQ-TARGET;temp:intralink-;e008;116;428Atotal ¼ 1 − ð1 − AepiÞð1 − β � ISCÞRt_DBRð1 − β � ISC 0Þð1 − AepiÞRb_DBR; (8)

where Rb_DBR and Rt_DBR are bottom and top DBR reflectivity, respectively (Table 2). It is worth
mentioning that only one rough interface between top DBR and LLO interface existed. The total
optical loss per round trip was thus calculated to be 67%, indicating that two thirds of light
energy was consumed during one round trip. This will seriously increase the lasing threshold
or even induce no lasing action if the gain medium cannot afford high injection level. Obviously,
interface scattering dominated in the optical loss of the cavity. Different total losses were theo-
retically predicted by varying the overlap coefficient and interface roughness value. As shown in
Table 3, the total optical loss can be reduced by decreasing either the overlap coefficient or the
interface roughness. For instance, lowing the interface roughness to 1 nm (0.05 × RMS) or
reducing the overlap coefficient to 5% of experimental value will reduce the optical loss
from 67% to 22-25%. The Q value will also increase to about 700 correspondingly.

Therefore, to elevate the quality factor of vertical DUV microcavity, two notable actions
can be implemented. First, the rough interface could be artificially placed on the wave node of
standing wave to reduce overlap coefficient β. Second, the interface RMS could be refined by
optimizing LLO process.

Table 2 Reflectivity of bottom and top DBRs and overlap between rough interface and standing
wave.

Mode (nm) 305 314 323 335

Rb_DBR (%) 98.01 97.97 97.66 96.74

Rt_DBR (%) 96.81 96.64 95.70 91.56

β 0.94 0.84 0.68 0.32
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4 Conclusions

In summary, an AlGaN QDs-based vertical microcavity with double-side dielectric DBRs was
fabricated. Four discrete cavity modes were observed. The optical loss was 103 cm−1 order of
magnitude and found to be mainly caused by the scattering of AlN/DBR interface. According to
our calculation, the overlap coefficient between rough interface and stationary wave field, and
roughness value of AlN interface were two critical parameters that contributed to the scattering
loss in cavity. Our results may provide some helpful information for further refining the DUV
VCSEL devices.
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