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AlGaN-Based Deep Ultraviolet Vertical-Cavity
Surface-Emitting Laser
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Abstract— An optically pumped AlGaN-based
vertical-cavity surface-emitting laser (VCSEL) in the
deep ultraviolet (DUV) range (<280 nm) is demonstrated.
The lasing wavelength is 275.91 nm with a threshold power
density of 1.21 MW/cm2 and a linewidth of 0.78 nm. The
lasing is believed to be benefited from high internal quantum
efficiency (IQE) of the AlGaN-based multiple quantum
wells (MQWs) and improved fabrication processes.

Index Terms— AlGaN, VCSEL, DUV.

I. INTRODUCTION

GaN-BASED vertical-cavity surface-emitting lasers
(VCSELs) are attracting much interest due to

their advantages of circular far field distribution, low
power consumption, single longitudinal mode emission,
temperature-insensitive properties, and two-dimensional
integration capability [1]. It can be used in various potential
applications, such as high-resolution printing, displays, visible
light communication, miniature atomic clocks and so on [2].

However, GaN-based VCSELs still face many challenges.
The lower refractive index contrast between nitrides, com-
paring with dielectric materials, results in several tens pairs
of nitrides needed for the nitride distributed Bragg reflectors
(DBRs) [3]–[5]. But the stress accumulated in the nitride
DBRs can cause a lot of cracks in the epilayer. For the
cavity with double dielectric DBRs [6], [7], substrate removal
combined with precise control of cavity length is necessary,
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resulting in complicated fabrication processes. In addition,
quantum confined Stark effect (QCSE) orientated from the
polarization of nitride reduces the radiative recombination effi-
ciency between electrons and holes. In addition, low-resistance
p-type nitride is still difficult to obtain for electrically pumped
VCSELs.

Despite these difficulties, GaN-based VCSELs have been
demonstrated in a wide spectral range [2]. It has been reported
from 363 nm [8] to 498.8 nm [9] for the optically pumped
GaN-based VCSELs. For the electrically pumped GaN-based
VCSELs, lasing from 402.3 nm [7] to 565.7 nm [10] has
been demonstrated. Among various laser light realized by
nitride materials, deep ultraviolet (DUV) laser has many
potential applications, such as disinfection, medical treatment,
biological sensing, lithography, and laser cutting. However,
neither optically pumped nor electrically pumped VCSEL has
ever been reported in DUV range (<280 nm). The shortest
wavelength of VCSELs reported is 363 nm [8].

Since the bandgap of AlxGa1−xN alloy varies from 3.4 eV
to 6.0 eV [11], with increasing Al composition x. AlGaN
based VCSEL is expected to work in the DUV range. Many
edge-emitting lasers (EELs) lasing in DUV range have been
reported by employing AlGaN epilayer [12]–[15]. However,
there are only a few reports of VCSEL in the sub-400 nm
regime [8], [16]–[19]. The specific challenge in VCSELs
compared with EELs is the different length of the gain region.
For VCSELs, the gain region is usually only several tens of
nanometers, while it can be several millimeters for EELs.
Thus, EELs are much easier to lase. There are many issues
need to be overcome in order to achieve AlGaN-based VCSEL
lasing in DUV range. First, it is difficult to obtain high crystal
quality AlGaN epilayer, especially with high Al composition.
Al atom has a low surface migration velocity, resulting in high
dislocation density [20]. Second, strong optical absorption
exists in both the DBR material and the AlGaN epilayer [21],
which increases the lasing threshold. Third, the substrate
removal of AlGaN epilayer is more difficult than that of
GaN epilayer because of the higher bandgap and the higher
decomposition temperature of AlGaN. Fourth, the rough AlN
or AlGaN surface after substrate removal increases the optical
scattering loss, making lasing even difficult [22], [23].

In this work, we successfully fabricated an optically pumped
AlGaN-based VCSEL using a cavity with double dielectric
DBRs consisting of alternative SiO2 and HfO2 layers. Laser

0741-3106 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xiamen University. Downloaded on February 26,2021 at 01:23:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4840-4448
https://orcid.org/0000-0001-7190-0338
https://orcid.org/0000-0002-7057-7214
https://orcid.org/0000-0002-9725-9566
https://orcid.org/0000-0001-9537-5179


376 IEEE ELECTRON DEVICE LETTERS, VOL. 42, NO. 3, MARCH 2021

lifted off (LLO) process was used to remove the sapphire
substrate. After LLO, the sample was polished to achieve
an atomically smooth surface. The measured VCSEL lasing
wavelength is 275.91 nm with a line width of 0.78 nm and a
threshold power density of 1.21MW/cm2.

II. EXPERIMENTS

The structure was grown on a nano-patterned sapphire
substrate (NPSS) using AMEC Prismo HiT3 metal organic
chemical vapor deposition (MOCVD) platform. A 4 µm AlN
buffer was firstly grown. Then a 200 nm AlN/Al0.6Ga0.4N
superlattice (SL) transaction layer with average Al compo-
sition of 80% was grown on the AlN buffer at 1100 ◦
to act as a “dislocation filter” [20], [24], [25]. A 1.2 µm
n-type Al0.6Ga0.4N layer with Si doping concentration of
8 × 1018cm−3 was grown on the SL layer at the same
temperature. The active region is consisted of 5 pairs of
Al0.4Ga0.6N (2 nm)/Al0.5Ga0.5N (6 nm) multiple quantum
wells (MQWs). Finally, a 60 nm p-type Al0.6Ga0.4N cladding
layer was grown on the top of MQWs.

The cavity fabrication began with the deposition of
a 15.5-pair HfO2/SiO2 (34.8 nm /47 nm) bottom DBR. The
DBR was etched into a series of 200 × 200 µm2 squares
by buffered oxide etcher (BOE) solution, after a lithography
process. Patterned DBR could enhance the following bonding
strength. The photoresist was removed, and the structure was
then inversed and bonded onto a glass by adhesive bonding.
The sapphire substrate, AlN buffer, and AlN/AlGaN SL were
removed by means of LLO with a 248 nm KrF excimer
laser. Then, the exposed surface was thinned and smoothed
in the chemical mechanical polishing (CMP) process, and the
epilayer broke spontaneously at the area without DBR under-
neath. The epilayer thickness after polish was 140∼700 nm
estimated by an optical interferometer. A 7.5-pair HfO2/SiO2
top DBR was deposited on the sample to finish the VCSEL
fabrication. The fabrication process and a top view of a DUV
VCSEL are shown in Fig.1. The sample surface morphology
was measured by using an atomic force microscope (AFM).
Photoluminescence (PL) measurements were performed, using
a 240-nm laser with 5 ns pulse duration and 20 Hz repeat
frequency. A Helium cycle cooling system was used in the
temperature dependent (TD) PL measurements.

III. RESULTS AND DISCUSSIONS

Fig. 2(a) is the excitation energy varied PL measurement
results of the as-grown wafer, collected at room tempera-
ture (RT). Three peaks can be observed at 271, 274.71 and
277.06 nm, respectively, which were interference peaks from
the optical resonance between the AlN/substrate interface and
the epilayer surface. And the epilayer thickness could be esti-
mated to be 5.6 µm from these peak positions, in agreement
with the structure. The emission center was at 274.71 nm.
The integrated PL intensity varied with the excitation energy
was depicted in a Log-Log plot, as shown in Fig. 2(b). The
integrated PL intensity I was proportional to the excitation
energy E , and can be express as the power law [27]–[29],

I ∝ E P , (1)

Fig. 1. DUV VCSEL fabrication process and device top view.

Fig. 2. Excitation energy varied PL measurement results of the as-
grown wafer (a). Three peaks at 271, 274.74 and 277.06 nm were
observed, which were interference peaks. The emission center is around
274.71 nm. Log-Log plot of the integrated PL intensity (I) as a function of
excitation energy (E) (b). I∝E0.9 indicates that radiative recombination
dominated in the whole PL measurement. TD PL measurement results
of the as-grown wafer (c). Top (d) and bottom (e) DBRs transmittance
spectra.

where P reflects the recombination type of the sample in
the PL measurement. P > 1, indicates that the emission
is dominated by defect-related nonradiative recombination;
P∼1, indicates that the emission is dominated by radiative
recombination; P < 1, indicates another nonradiative recom-
bination, Auger recombination, which is more prominent at
high injection levels [29], [30]. In Fig. 2(b), P = 0.9, which
indicates that radiative recombination dominated in the whole
PL measurement. It suggests low defect density in the active
region.

Fig.2 (c) shows the TD (3.23 K∼300 K) PL measure-
ment results of the as-grown wafer, and all the spectrum
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TABLE I
SUMMARY OF LASING WAVELENGTH, THRESHOLD, AND LINE WIDTH

FROM PREVIOUS VCSEL RESEARCH RESULTS AND THIS STUDY

were normalized. Three peaks could be observed at 271.15,
274.23 and 277 nm, which were also interference peaks.
The emission center varied from 271.15 to 274.23 nm with
increasing temperature. The internal quantum efficiency (IQE)
of the MQWs was estimated, following the formula, IQE =
IRT /ILT , where IRT is RT integrated PL intensity and ILT

is low temperature integrated PL intensity. Assuming the IQE
is 100% at 3.23 K, the estimated IQE at 300 K is ∼62%.
It is a reasonable high value comparing with previous research
results, 85% [31], 69% [32], 50% [33], 55% [34], 43% [35],
and 8% [36].

The transmittance spectra of the top and bottom DBRs were
depicted in Fig.2 (d) and (e). The bandwidth was ∼45 nm
for both top and bottom DBRs. The extinction coefficient for
HfO2 and SiO2 was 0.009 and 0, respectively, at 280 nm. The
reflectivities of top and boom DBRs were calculated to be
95.3% and 97.7% at 276 nm.

After LLO, the epilayer was lifted off from AlN/AlGaN SL,
and then thinned and polished to remove the degraded crystal
produced in LLO. Fig. 3 is AFM surface morphology after
polishing. The atomic smooth surface is achieved with root-
mean-square (RMS) roughness of 0.96 nm. A flat surface can
reduce the optical scattering loss of the cavity [22], [23].

The fabrication of the AlGaN-based VCSEL was finished
by the deposition of top DBR. Then, it was optically pumped
by a 240-nm laser with 5 ns pulse duration and 20 Hz repeat
frequency at RT. The collected emission spectra are shown in
Fig. 4(a). With the increasing pumping energy, a lasing peak
appeared at 275.91 nm with a linewidth of 0.78 nm. Fig. 4 (b)
shows the light output intensity as a function of excitation
energy. The threshold power density is 1.21 MW/cm2 after
considering the top DBR reflection (64% transmittance at
240 nm). Table I summarizes the characteristics of previous
sub-400 nm VCSELs and this work, which are all optically

Fig. 3. AFM image (10 × 10 µm2) of the epilayer after polishing. The
RMS roughness is 0.96 nm.

Fig. 4. Laser emission spectra for the AlGaN VCSEL with increasing
pumping energy at room temperature (a), light output intensity as a
function of excitation energy at room temperature (b).

pumped at RT. As shown in Table I, the shortest wavelength,
363 nm, was reported in 1996 using the GaN layer. Comparing
with previous works, this work realized the VCSEL with
AlGaN MQWs structure lasing at 275.91 nm.

Our superior lasing character is believed to be benefitted
from the good quality of the active region with an IQE of 62%,
double-side dielectric DBR structure instead of hybrid DBRs
structure to reduce the growth difficulty of the epilayer, and
good polishing technique to obtain smooth surface after LLO.

IV. CONCLUSION

Optically pumped AlGaN-based DUV VCSEL was realized
with a lasing wavelength of 275.9 nm, a threshold power
density of 1.21 MW/cm2 and a linewidth of 0.78 nm. The
lasing is believed to be benefited from high IQE of the MQWs
and improved fabrication processes.
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