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Abstract— In this letter, we systematically investigate
the impact of randomly distributed ferroelectric/interlayer
(FE/IL) and interlayer/oxide-semiconductor (IL/OS) inter-
face traps, both individually and in combination, on the
variability of oxide-semiconductor ferroelectric field-effect
transistor (OS-FeFET) memory devices. Our study demon-
strates that: 1) as the density of IL/OS interface traps
(NIL/OS) increases, the memory window (MW) exhibits sig-
nificant fluctuation with a larger σMW, resulting in the degra-
dation of µMW; 2) MW is impacted by the density of FE/IL
interface traps (NFE/IL) by modifying the electric field in FE
and IL layers, consequently leading to a substantial µMW
but no obvious change in σMW; 3) when considering the
combined impact of both types of traps, the impact of FE/IL
interface traps on increasing µMW is suppressed with an
increased NIL/OS. However, it is crucial to note that although
the larger NIL/OS dominates the overall MW fluctuation, the
fluctuation caused by NFE/IL cannot be disregarded espe-
cially with smaller NIL/OS. These findings provide valuable
insights into the understanding of interface trap effects on
the device variation of OS-FeFET memories.

Index Terms— FeFET, oxide semiconductor, interface
traps, memory window, variation.

I. INTRODUCTION

HAFNIA-BASED ferroelectric field-effect transistors
(FeFETs) have garnered significant attention for their

advantages in non-volatile memory (NVM) applications,
including good scalability, compatibility with CMOS, high
density, fast read/write speed, and low power consumption
[1], [2], [3], [4], [5], [6]. A high-density vertical-channel
FeFET structure using poly-Si channel has been success-
fully demonstrated for 3D integration applications [7], [8].
However, there are still challenges, such as low mobilty
of poly-Si channel, low-k interfacial layer formation, and
high thermal budget [9]. Recently, oxide semiconductor, such
as IGZO, has been proposed to replace conventional poly-
Si channel as a suitable channel material for FeFETs due
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to its high mobility as an amorphous material, no low-k
interficial layer, low thermal budget, and junctionless FET
operation [10], [11]. To date, most of the reported OS-FeFETs
are bottom-gate structures with channel-last process, which
avoids the undesirable low-k IL formation due to low thermal
budget. However, the oversized gate design results in extra
parasitic gate-channel-S/D overlap capacitance, and the non-
self-aligned gate process can cause the current drive loss [12].
Therefore, it is necessary to develop low-thermal-budget top-
gate OS-FeFETs to leverage self-aligned gate-S/D patterning
capability for easing aggressive transistor feature size and
circuit density scaling. These top-gate structures with channel-
first process, which are commonly used in Si-based FeFETs,
may result in uncontrollable FE/OS interface quality due to
the process conditions of film deposition and annealing [13].
Thus, intentional preparation of a high-quality IL between FE
and OS layer is needed, which is applied even in bottom-gate
structures for performance improvements [14], [15]. For con-
ventional FeFETs with Si channel, it has been reported that the
trap charges at either FE/IL or IL/Si interface in the gate stack
affect the memory characteristics, such as MW, endurance,
and retention [16], [17], [18], [19], [20]. Nevertheless, the
analysis on the interface traps has been rarely studied for
OS-FeFETs with the IL. Since the interface traps are randomly
distributed, the interface trap induced variability is expected to
be of great importance for the devices. Therefore, in this work,
with the aid of TCAD simulation, we investigate the IGZO-
channel FeFET device variation induced by random spatial
traps fluctuation from FE/IL and IL/OS interface individually
and in combination.

II. SIMULATION METHODOLOGY

A schematic of the OS-FeFET structure with HZO and
IGZO as the FE and OS channel layer, respectively, along
with an illustration of randomly distributed interface traps,
is presented in Fig. 1(a). To describe FE multi-domain, the
Preisach model is employed in simulation [21], [22]. Fig. 1(b)
shows the calibration of the FE parameters with the experi-
mental P-V data of a FE capacitor [23]. Here, the remnant
polarization (Pr) and saturation polarization (Ps) are 20 and
23 µC/cm2, respectively, corresponding to a coercive field (Ec)

of 1.5 MV/cm. A good agreement is achieved between the
simulated and reported experimental P-V data. Furthermore,
IGZO material with a bandgap of 3.2 eV, an electron affinity
energy of 4.16 eV, and a dielectric permittivity of 10 was
implemented by density of state (DOS) model in simulation.
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Fig. 1. (a) Schematic structure of the OS-FeFET with 10 nm HZO and
20 nm IGZO, along with randomly distributed interface traps, (b) FE
parameter calibration with the experimental P-V data [23], and (c) the
DOS of IGZO material calibrated from the reported data [24].

Fig. 1(c) shows the DOS of IGZO material, which is well
calibrated from the reported data [24]. Here, DOS parameters
include valance and conduction band tail states at band edges
(NTD and NTA), tail state slope (WTD and WTA), acceptor-like
and donor-like states with Gaussian distributions (NGA and
NGD) along with their full width at half maximums (WGA
and WGD). The gate length and width of the devices are
40 and 40 nm, respectively. For memory operation, separate
erase state (HVT state) and program state (LVT state) are set
by using square gate pulses (100 ns) with amplitude of -5
and 5 V, respectively. Then a bias voltage of 0.05 V is applied
to the drain and the ID-VG curve of the device is obtained by
scanning the gate bias voltage.

In this work, we have considered the fixed (acceptor) traps
at the FE/IL and IL/OS interface, taking into account that
IGZO is an n-type semiconductor. The density of the related
traps is within reasonable ranges [17], [18], [19]. Both traps
are randomly distributed and do not influence each other. To
better describe the interface trap induced device variation,
we simulate three separate groups (100 devices each) of
OS-FeFET devices.

III. RESULTS AND DISCUSSION

A. w/o FE/IL Interface Traps, w/ IL/OS Interface Traps
Fig. 2(a) shows the transfer ID-VG curve dispersions for

the OS-FeFETs with different NIL/OS. The black curves are
ideal for the baseline device without traps. It can be found
that the presence of IL/OS interface traps results in significant
fluctuation for both HVT and LVT states. With the NIL/OS
increasing, both HVT and LVT shift in positive direction
and their fluctuation becomes larger. Meanwhile, the corre-
sponding subthreshold swing (SS) degrades, as summarized
in Fig. 2(b), indicating the impact of IL/OS interface traps.
Fig. 2(c) presents the LVT and HVT distributions with the
MW distributions in the inset, which are extracted from ID-VG
curves with different NIL/OS. Fig. 2(d) shows the extracted
mean (µMW) and standard deviation (σMW) for the MW as
a function of NIL/OS. It can be found that as the NIL/OS
increases, the LVT state is more significantly affected than the
HVT state and the MW is degraded. The MW degradation can

Fig. 2. (a) Dispersive ID-VG curves for OS-FeFETs with different
NIL/OS, (b) SS at HVT and LVT states as a function of NIL/OS,
(c) LVT/HVT distributions (inset: MW distributions) extracted from ID-VG
curves with different NIL/OS, (d) extracted µMW and σMW as a function
of NIL/OS, and (e) channel electron density distributions at VG = 2.5 V
after ERS with different NIL/OS.

be ascribed to the screened FE polarization by IL/OS interface
traps [17]. After program operation with the positive gate
pulse, many electrons are induced near the channel interface
at the LVT state. These electrons can be easily screened
away from the channel interface by the acceptor-type IL/OS
interface traps [25]. It indicates that the NIL/OS has pronounced
impact on the LVT state than the HVT state. The larger NIL/OS
is, the more severe the impact is. Thus, as the NIL/OS increases,
the LVT state exhibits a larger distribution as compared with
the HVT state, resulting in the obvious asymmetry in the LVT
and HVT variability under the NIL/OS of 2 × 1013 cm−2. To
explain the spread of MW distributions (larger σMW) with the
NIL/OS increasing, the channel electron density distributions
at VG = 2.5 V after erase with different NIL/OS is illustrated
in Fig. 2(e). The nonuniform distribution of channel electron
density is obviously observed for the larger NIL/OS case, which
is in good agreement with larger σMW.

B. w/ FE/IL Interface Traps, w/o IL/OS Interface Traps
Fig. 3(a) and (b) shows the dispersive ID-VG curves and

extracted MW distributions, respectively, for the OS-FeFETs
with different NFE/IL. Fig. 3(c) illustrates the extracted µMW
and σMW as a function of NFE/IL. As the NFE/IL increases,
the µMW becomes larger while the σMW exhibits only a slight
increase. Additionally, the SS is almost not affected. These
phenomenon are quite different from that caused by NIL/OS.
The increased MW with higher NFE/IL can be attributed to
the acceptor-type FE/IL interface trap-assisted polarization
enhancement [26]. With the positive gate voltage applied (LVT
state), the trapped electrons at the FE/IL interface screen the
electric flux from FE polarization, resulting in the reduction
of IL electric field (EIL). Fig. 3(d) shows the change of
the energy band diagram for the devices with and without
FE/IL interface traps at VG = 5 V. It can be seen that the
energy band becomes higher at FE/IL interface with FE/IL
interface traps as compared to that without traps, indicating
the strengthened FE electric field (EFE) and weakened EIL
simultaneously. Thus, the increased NFE/IL could lead to an
increase of EFE, assisting the polarization switching. However,
with the negative gate voltage applied (HVT state), there
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Fig. 3. (a) Dispersive ID–VG curves for OS-FeFETs with different
NFE/IL, (b) MW distributions extracted from ID-VG curves with different
NFE/IL, (c) extracted µMW, σMW as a function of NFE/IL, (d) energy band
diagram for the devices with and without FE/IL interface traps at VG =

5 V, (e) PLVT, PHVT, ∆P as a function of NFE/IL (inset: P-V curve for
NFE/IL = 1 × 1012 cm−2), (f) FE polarization distributions at VG = 0 V
after program and erase, and (g) channel electron density distributions
at VG = 2.5 V after ERS with different NFE/IL.

are few trapped holes to assist the polarization switching
[27]. This can be confirmed by the asymmetric polarization
characteristics in Fig. 3(e), where a large polarization (PLVT)

can be induced during program but only a small polarization
(PHVT) can be induced during erase. The increase of the
NFE/IL leads to larger polarization, which is consistent with
the FE polarization distributions in Fig. 3(f). Moreover, since
the FE/IL interface traps can also induce positive shift for
both HVT and LVT states, the MW is determined by both
the polarization enhancement (particularly at the LVT state)
and trap-induced VT shift. By considering these, as compared
to the HVT, the LVT shifts slightly because the polariza-
tion enhancement and trap-induced VT shifts in the opposite
direction. Due to the random distribution of FE/IL interface
traps, uneven polarization of the FE layer is induced, which
further affects the potential across the gate stack, resulting in
the channel electron density fluctuation. Fig. 3(g) shows the
channel electron density distributions at VG = 2.5 V after
erase with different NFE/IL, which remains relatively uniform,
confirming the slight σMW variation. This uniform channel
electron density distribution could be ascribed to the IL layer,
which suppresses potential fluctuation and makes the channel
electron density become relatively homogeneous.

C. With FE/IL Interface Traps and IL/OS Interface Traps
To reveal the combined impact of both FE/IL and IL/OS

interface traps, we analyze the impact of NIL/OS (or NFE/IL)

with different densities at different constant NFE/IL (or
NIL/OS). Fig. 4(a) presents the simultaneous impact of both
types of interface traps on µMW. It can be observed that as
the NFE/IL increases, the µMW gradually increases. This effect

Fig. 4. Simultaneous impact of both FE/IL and IL/OS interface traps on
(a) µMW and (b) σMW, and (c) the relative increase in σMW as a function
of NFE/IL at constant NIL/OS.

is correlated with NIL/OS and can be suppressed with the
increase of the NIL/OS, which could be due to their individual
impact with opposite behavior in MW. Fig. 4(b) illustrates the
simultaneous impact of both types of interface traps on σMW.
The most noticeable trend is that the MW fluctuation greatly
increases with the increase in NIL/OS at a certain NFE/IL.
However, the increased NFE/IL leads to a relatively slow
increase in MW fluctuation at a certain NIL/OS. This indicates
that the NIL/OS dominates the overall MW fluctuation. To
better evaluate the MW variability with the combined impact
of the NFE/IL and NIL/OS, the relative increase in σMW as a
function of NFE/IL at constant NIL/OS is plotted in Fig. 4(c).
Here, the relative increase refers to the ratio of the σMW value
of the absolute increase to the value of the σMW at NFE/IL = 0.
It can be observed that when NIL/OS exceeds a critical value
(1×1013 cm−2), the increment in fluctuation caused by NFE/IL
is relatively small. It indicates that the MW fluctuation is
mainly dominated by IL/OS interface traps when NIL/OS is
large enough. When NIL/OS is below the critical value, the
increment in MW fluctuation enhances with the increase in
NFE/IL. This means that the MW fluctuation caused by FE/IL
interface traps cannot be ignored with small NIL/OS. Therefore,
in device variation analysis, the impact of both FE/IL and
IL/OS interface traps should be considered comprehensively,
which is essential for OS-FeFET devices.

IV. CONCLUSION

The impact of randomly distributed FE/IL and IL/OS inter-
face traps on the device variation of OS-FeFET memories
has been comprehensively investigated by TCAD simulation
individually and in combination. Our study demonstrates that
higher NIL/OS leads to a noticeable decrease in MW and
a great increase in MW fluctuation, together with degraded
SS. While higher NFE/IL causes an improved MW and a
slightly increase in MW fluctuation. Taking both FE/IL and
IL/OS interface traps into consideration, the MW enhancement
effect caused by FE/IL interface traps is further weakened
with increasing IL/OS interface traps. There exists a critical
NIL/OS at which IL/OS interface traps dominate the overall
MW fluctuation above this trap density. Below this critical
value, the MW variability caused by both IL/OS and FE/IL
interface traps cannot be ignored. In addition, it should be
pointed out that OS-FeFETs with nearly-zero low-k interfacial
layer between FE and OS layers has also been reported [9],
[10], [11], which has not been addressed in this work and
needed further investigation on the impact of FE/OS interface
trap fluctuation. The present results in this letter may provide
a physical insight and trigger more comprehensive analyses
on the impact of interface traps in OS-FeFET memories.
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