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Abstract
In this study, the impact of interfacial charges including fixed charges and acceptor-type traps
between the dielectric and the channel in negative capacitance ferroelectric FETs (FeFETs) is
investigated by simulation based on the Landau–Khalatnikov model. The results reveal the
separate impact of the fixed charges and acceptor-type traps on device performance degradation,
respectively, including the subthreshold swing (SS), switching current (Ion and Ioff) and
threshold voltage (VT). On this basis, the combined impact of interfacial charges with the fixed
charges and acceptor-type traps co-existing equally is further explored. Our findings indicate
that the fixed charges play a key role in the VT and Ioff, while the acceptor-type traps
predominate in the SS and Ion. This study helps to understand the degradation mechanism of
FeFETs and extend the device end-of-lifetime.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Integrated circuits urgently need to develop new types of
low-power microelectronic devices as Moore’s law gradually
reaches its physical limits. Ferroelectric FETs (FeFETs) can
achieve gate voltage amplification through the negative capa-
citance (NC) effect of ferroelectric materials, which achieves
a subthreshold swing (SS) below the fundamental Boltzmann
limit of 60 mV dec−1 at room temperature [1–3]. With the
discovery of ferroelectricity in doped hafnia, hafnia-based
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FeFETs have become one of themost promising candidates for
logic and memory devices. Recently, numerous investigations
have been carried out on the NC effect in FeFETs, including
various aspects such as capacitance matching [4–7], device
parameters [8–10] and manufacturing processes [11–13]. For
a transistor, the impact of traps/charges at the interface can
degrade the device performance in terms of threshold voltage
(VT) shift and SS degradation, thus causing certain reliability
issues [14–19]. Many studies, by considering the traps at the
dielectric (DE)/channel interface, have been well established
in MOSFETs with traditional DEs [20–23]. However, the
interface issue is still not fully understood in FeFETs with the
metal-FE-insulator-silicon (MFIS) structure by incorporating
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a high-permittivity FE layer. Most studies so far have analyzed
the trap/charge behavior at the FE/DE interface [12, 13, 24].
The DE/channel interface is equally of great importance but
has not been studied in detail. At the DE/channel hetero-
interface, there may be different types of interfacial charges.
One is the fixed charges originating from the defects that are
either always occupied or not occupied by the electrons. The
other is the acceptor-type traps, where the number of cap-
tured charges is affected by the gate voltage and some can
be transformed into residual charges due to the bias temper-
ature instability (BTI) effect [23, 24]. However, some studies
have only analyzed the impact of a single type of charges at the
DE/channel interface on certain device characteristics [25, 26],
which is not comprehensive enough and can be further studied.
Although the combined impact of charges at different inter-
faces in FeFETs has been studied [27], the interaction between
different types of charges at the same interface on device per-
formance has not been investigated. Therefore, the combined
impact of interfacial charges, including the fixed charges and
acceptor-like traps at the DE/channel interface, needs further
detailed investigation.

In this work, we consider both the fixed charges and
acceptor-type traps at the DE/channel interface in an n-type
MFIS hafnia-based FeFET using the Landau–Khalatnikov
(LK) model. We analyzed the device performance for the
case where the traps were not fully recovered. The impacts
of the fixed charges and acceptor-type traps on the device per-
formance, including VT, SS, Ion and Ioff, were studied separ-
ately and compared. On this basis, we further investigated the
combined impact of both charges on the device performance.
The obtained results in this work could provide a solution to
understand the physical mechanism of the device performance
degradation in FeFETs.

2. Device structure and simulation model

Figure 1(a) shows the schematic structure of the simulated
FeFET device, where Si, HfZrO and SiO2 are chosen as the
channel material, FE and DE insulators, respectively. The
fixed charges and acceptor-type traps are assumed at the
DE/channel interface. Figure 1(b) depicts the equivalent cir-
cuit of the FeFET by considering the charges at the DE/chan-
nel hetero-interface. The ferroelectric model is established
based on the LK equation, which is given by [29]:

− ρ
dP
dt

= 2αP+ 4βP3 + 6γP5 −EF (1)

where α, β and γ are LK parameters, ρ is the viscosity that
represents a kinetic coefficient associated with the polarization
switching, P is the polarization and EF is the local electric field
in the FE layer. The LK model has been widely used in HfO2-
based ferroelectric materials, and can exhibit the properties of
HfO2-based ferroelectric materials well [1–5, 25–27].

We made the experiment-based calibration for the LK
model by fitting it with experimental data [28], as shown in
figure 2(a). The simulated S-curve in the P–V characteristic

Figure 1. (a) The schematic structure and (b) equivalent circuit of
the FeFET device.

Figure 2. (a) P–V calibration for the experimental data [28], and
(b) Id–Vg curves at Vd = 0.05 V for the NC-FeFET and baseline
MOSFET.

Table 1. The main simulation parameters.

Simulation parameters Value

LK parameter α −8.2 × 1010 cm/F
LK parameter β 4.2 × 1012 cm5/(F·C2)
LK parameter γ 5 × 1029 cm9/(F·C4)
Relative dielectric constant for SiO2 3.9
Relative dielectric constant for HZO 25
S/D doping concentration 1019 cm−3

Channel doping concentration 5 × 1017 cm−3

Gate work function 4.43 eV
Gate length 100 nm
FE thickness 8 nm
Oxide thickness 1 nm

presents a reasonable match with the experimental data. The
LK parameters of ferroelectric materials extracted from the
experimental data are shown in table 1.

Figure 2(b) shows the simulated Id–Vg characteristics of the
FeFETwith theMFIS structure based on the LKmodel and the
baseline MOSFET without the FE layer. The corresponding
simulation parameters are shown in table 1. The obtained min-
imum SS (SSmin) of the FeFET and baseline MOSFET were
56 and 66 mV dec−1, respectively, as a result of the incor-
poration of the NC effect. These results are simulated by solv-
ing Poisson’s equation, the drift-diffusion equation and the LK
equation self-consistently at each mesh point of the device.

For the consideration of the interfacial charges between the
DE and the channel, the simulation includes the fixed charges
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and acceptor-type traps, which are randomly distributed and
commonly considered in n-type FeFET devices [26, 27, 30].
It is worth noting that the charge concentrations used in this
work are consistent with the relevant existing studies [25, 27].
The model also takes into account a variety of physical mech-
anisms, such as carrier recombination and generation, mobility
degradation induced by impurity scattering and carrier–carrier
scattering, quantum mechanical effects, and velocity satura-
tion of high field effects.

3. Results and discussion

Figures 3(a) and (b) show the impact of the fixed charges and
acceptor-type traps on the SS, respectively. The deterioration
of the SS can be observed as the concentration of the fixed
charges and acceptor-type traps (Nfc and Nac) increases. How-
ever, the impact of the acceptor-type traps on the SS still dif-
fers significantly from that of the fixed charges. At low Vg,
the SS variation that considers the Nac is substantially larger in
magnitude than that which considers the Nfc, which could be
attributed to the fact that the concentration of charges captured
by the acceptor-type traps increases with the Vg increase, res-
ulting in an additional change in charge. Thus, it reduces the
ability of the gate voltage to control the channel [27]. Sim-
ilarly, it is clearly observed that the SSmin increases with the
Nac increase, which could be ascribed to the larger change in
charge caused by the increase of the Nac.

Besides the SS, the Ion, Ioff andVT are also important figures
of merit for the device. The Ion and Ioff are extracted at the
Vg = 0.8 and 0 V, respectively, and the VT is extracted using
the constant current method. Figures 4(a) and (b) show the
impact of the fixed charges and acceptor-type traps individu-
ally on the switching current including Ion and Ioff, respect-
ively. As Nfc and Nac increase, both the Ion and Ioff decrease
gradually. This is because, whether it is the fixed charge or the
acceptor-type trap, a certain amount of charge is generated at
the DE/channel interface, which could influence the charges
originally generated in the channel by the Vg. In addition, this
change affects the FE polarization [4, 5], which could further
affect the total charges at the interface. It is found that the Ioff
varies faster than the Ion, which could probably be due to the
fact that the total charges at the interface itself are smaller at
lower Vg. Thus, the change in the charges caused by the Nfc

or Nac have a greater impact. In contrast, the charges at the
interface itself are larger at higher Vg, and the change in the
charges due to the Nfc or Nac has a smaller impact. As a res-
ult, the Ion variation at higher Vg is smaller than the Ioff vari-
ation at lower Vg. By considering the Nfc or Nac individually,
the impact of the acceptor-type traps on the Ion is larger but
on the Ioff is smaller than that of the fixed charges. This phe-
nomenon could be explained by the corresponding polariza-
tion (P) in figure 4(c), where the P caused by the fixed charges
is larger at low Vg = 0 V but smaller at high Vg = 0.8 V than
that caused by acceptor-type traps. The FE polarization as a
critical factor of the FeFET can likewise explain the SS vari-
ation (in figure 3) caused by the interfacial charges. The shaded
part with slashes in figure 4(c) represents the P variation with

Figure 3. SS as a function of Vg at different (a) Nfc and (b) Nac.

Figure 4. The change in percentage of (a) Ion and (b) Ioff, (c) P
values at Vg = 0 and 0.8 V with different Nfc and Nac, and (d) the
dependency between∆VT and Nfc (or Nac).

the Vg varying from 0 to 0.8 V, which decreases gradually
with the Nfc or Nac increasing. This decreased P variation res-
ults in a decrease in the variation of the voltage across the
FE layer and further a reduction in the gate voltage amplific-
ation effect, which ultimately contributes to the SS degrada-
tion in the FeFET. Figure 4(d) shows the dependency between
the VT and Nfc (or Nac). It is found that the VT offset (∆VT)
rises approximately linearly with the Nfc and Nac increasing.
In addition, compared to the fixed charges, the acceptor-type
traps exhibit a smaller impact on the VT, which could be due
to smaller variation of the charges caused by the acceptor-type
traps compared to the fixed charges at the same concentration
[24].

Figures 5(a)–(d) demonstrate the combined impact of the
fixed charges and acceptor-type traps on the FeFET device
performance including the SSmin, Ion, Ioff and VT. From
figure 5(a), as the Nfc increases, the impact of the acceptor-
type traps on the SSmin becomes greater: that is, the same vari-
ation of the Nac causes a greater change in SSmin. This could
be ascribed to the decrease in the FE polarization variation (in
figure 3(c)) caused by the charges as the Nfc increases. Thus,
it degrades the subthreshold characteristics and the NC effect
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Figure 5. The combined impact of the fixed charges and
acceptor-type traps on (a) SSmin, (b) VT, (c) Ion and (d) Ioff.

by shifting the operation point. The degraded NC effect due
to the Nfc increase further degrades the gate controllability,
resulting in an enhanced impact of the Nac [27]. Similarly, as
the Nac increases, the impact of the fixed charges on the SSmin

also becomes greater. Consequently, the SS degrades faster
as the interfacial charges increase. For the VT in figure 5(b),
there is no significant interaction between the fixed charges
and acceptor-type traps, except that the fixed charges have a
greater impact on the VT than the acceptor-type traps. This is
because the VT is dependent on the number of charges, and the
number of charges caused by the Nac and Nfc is individual at
low Vg. For the switching current in figures 5(c) and (d), with
the Nac increasing, the impact of the fixed charges on the Ion
becomes greater but on the Ioff it becomes smaller. For the Ion
extracted at Vg = 0.8 V, the SS at this gate bias decreases as
the Nac increases, resulting in a larger Ion variation with the
same ∆VT induced by the Nfc and, further, a greater impact
on Ion. In contrast, for the Ioff extracted at Vg = 0 V, the SS
at this gate bias increases as the Nac increases, resulting in a
smaller Ioff variation with the same ∆VT induced by the Nfc

and, further, a smaller impact on Ioff. Similarly, with the Nfc

increasing, the impact of the acceptor-type traps on the Ion also
becomes greater but on the Ioff becomes smaller. In addition,
from the values of the Ion and Ioff variations, it can be observed
that the Ioff is much more affected by the Nfc (or Nac), indic-
ating a stronger correlation between the interfacial charges
and Ioff.

Based on the above simulation analysis, it can be con-
cluded that the device performance degradation is acceler-
ated by the growth of the interfacial charge concentration
by considering the fixed charges and acceptor-type traps
simultaneously. This means that the same variation of the
interfacial charge concentration has a larger influence on

device performance in the high-concentration scenario com-
pared to the low-concentration scenario. Under the co-action
of the fixed charges and acceptor-type traps, the fixed charges
play an important role in the VT and Ioff, but the acceptor-type
traps become dominant in the SS and Ion. Notably, the previous
discussion is based on the assumption that Nfc is equal to Nac:

namely, Nfc and Nac are assumed to be of the same order of
magnitude. In contrast, when either Nfc or Nac is much larger
than the other, the charge with larger concentration accounts
for the primary contribution to the impact of the device per-
formance, except for the SS. For the SS of the device, it is
always influenced by the acceptor-type traps. Meanwhile, the
charge with a larger concentration can significantly amplify
the impact of the charge with the smaller concentration on the
device performance, other than the VT. Furthermore, assum-
ing that the acceptor-type traps become residual charges after
capturing the charge, it can be forecasted that the transform-
ation of the acceptor-type traps into residual charges at low
Nac would result in a small change in the device performance,
except for a large impact on the Ioff. However, when the Nac

becomes larger, the BTI effect will gradually intensify and
cause an increase in VT and a decrease in Ioff during the trans-
formation process.

4. Conclusions

We study the impact of the interfacial charges including the
fixed charge and acceptor-type traps at the DE/channel inter-
face on the performance degradation in NC-FeFETs. The
device performance, including SS, Ion, Ioff and VT by con-
sidering the impact of fixed charges and acceptor-type traps
individually, is investigated. When both the fixed charges and
acceptor-type traps are present at the same time, they enhance
each other’s influence on device performance degradation.
With the equally co-existing fixed charges and acceptor-type
traps, the fixed charges dominate the VT and Ioff, while the
acceptor-type traps dominate the SS and Ion. This work may
provide insight into the device physics of FeFETs.
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