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ABSTRACT AlGaN-based vertical-cavity surface-emitting
lasers (VCSELs) have garnered recent interest due to their
superior material properties and device benefits. Nevertheless,
AlGaN-based VCSELs are extremely difficult to realize due to
numerous technical limitations associated with both material
epitaxial growth and chip fabrication. This study fabricated a
high-quality AlGaN multiple quantum wells (MQWs) struc-
ture using epitaxial lateral overgrowth and analyzed it using
X-ray diffraction (XRD) and photoluminescence (PL) mea-
surements. With an edge dislocation density (DD) of 109 cm−2,
XRD measurements reveal that the AlN template is nearly
fully relaxed. The subsequent AlGaN/AlN superlattice (SL)
layer is introduced to decrease the edge DD, and the edge DD
in the MQWs is ~108 cm−2. According to PL measurements,
the internal quantum efficiency of the MQWs is as high as
62%, and radiative recombination dominated the emission of
the MQWs at room temperature. Using these epitaxial wafers,
ultraviolet radiation C (UVC) VCSELs were fabricated using
various techniques, including laser lift-off (LLO) and chemical
mechanical polishing (CMP). The crystallinity of the MQWs
was unaffected by sapphire substrate removal using LLO.
After removing the sapphire substrate using LLO and CMP,
UVC surface-stimulated emission was observed in MQWs.
AlGaN-based UVC VCSELs with lasing wavelengths of 275.91,
276.28, and 277.64 nm have been fabricated. The minimum
threshold for UVCVCSELs is 0.79 MW cm−2, which is a record
low.

Keywords: AlGaN, vertical-cavity surface-emitting lasers, epi-
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INTRODUCTION
Since it was first proposed in 1977, the vertical-cavity surface-
emitting laser (VCSEL) has attracted significant interest from
both basic research and industry due to its advantages, which
include on-wafer testing, single mode output, low cost, two-
dimensional (2D) array capability, circular beam, small diver-
gence, simple collimation, and small wavelength shift. GaAs-
based VCSELs have been successfully implemented in various
fields, including 3D imaging, laser radar, and optical commu-

nication. Compared with GaAs, group III nitrides have high-
temperature tolerance, radiation resistance, high breakdown
voltage, high thermal conductivity, and direct bandgap, varying
continuously from 0.76 eV for InN [1] to 6.14 eV for AlN [1].
Therefore, they are suitable for fabricating ultraviolet (UV) and
visible light-emitting devices, including VCSELs. With the
development of III-nitride growth techniques, nitride VCSELs
can be fabricated and have been realized in the wavelength range
from 275.9 [2] to 565.7 nm [3]. Among them, electrically
pumped VCSELs with lasing wavelength above 400 nm have
been demonstrated. Lu et al. [4] created the first electrically
pumped GaN-based VCSEL at 462.8 nm and 77 K in 2008. Since
then, the performance of electrically pumped GaN-based
VCSELs has been significantly enhanced. A blue GaN-based
VCSEL with 16 mW of output power [5] and a 2D 16 × 16 GaN-
based VCSEL array with 1.19 W of output power [6] have been
demonstrated. For green VCSELs, room temperature (RT) CW
lasing was demonstrated using InGaN quantum dots. However,
VCSELs with lasing wavelengths below 400 nm are all optically
pumped, and only one has been reported in ultraviolet radiation
B (UVB) (280–320 nm) [7] and ultraviolet radiation C (UVC)
(200–280 nm) [2].
UV (deep UV) VCSELs can be used for material curing,

photolithography, sterilization, the treatment of skin diseases,
and solar-blind short-range communication. AlGaN multiple
quantum wells (MQWs) structures frequently function as active
layers in the UVB and UVC ranges. However, many technical
challenges are still limitations to achieving AlGaN-based
VCSELs, including material growth technique and device fab-
rication process. On the one hand, aluminum atoms have a high
adhesion coefficient and a low surface migration velocity,
resulting in a 3D island-like growth mode and an increase in the
dislocation density (DD) in AlGaN epilayers [8]. On the other
hand, crystalline quality, particularly DD, also influences inter-
nal quantum efficiency (IQE). It has been reported that as DD
increases from 2 × 108 to 6 × 109 cm−2, the IQE of AlGaN-based
MQWs decreases from 64% to 4% [9]. On the other hand,
AlGaN epilayers with low DD are difficult to grow, and the
following strategies have been proposed to reduce DD in AlGaN
epilayers: using high crystalline quality AlN as the template in
the growth of AlGaN [8]; using nano-patterned sapphire
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substrate (NPSS) to introduce epitaxial lateral overgrowth
(ELOG) of AlN [10]; increasing the growth temperature to
reduce the coalescence-related DD in AlN template [10];
inserting superlattice (SL) structure between the AlN template
and AlGaN epilayer to further reduce DD in the AlGaN epilayer
[8,11–13]. In addition, the quantum confined stark effect
(QCSE) ascribed to the polarization of nitrides decreases the
efficiency of radiative recombination and the IQE.
However, the fabrication of AlGaN-based VCSELs is also

challenging. The optical absorption increases as the wavelength
decrease, so nitride-distributed Bragg reflectors (DBRs) are
incompatible with UV (deep UV) VCSELs. The structure of
dielectric DBRs is then a viable option. The structure must
eliminate the sapphire substrate of the AlGaN-based wafer. Laser
lift-off (LLO) has been used to remove sapphire substrates from
GaN-based wafers, where the decomposition of GaN is an
important issue. The decomposition of an AlGaN layer on an
AlGaN-based wafer is also crucial. Due to its high decomposi-
tion temperature and stable chemical properties, it is difficult to
achieve the decomposition of AlGaN with a high Al content. By
optimizing the “sacrificial layer” (GaN or AlGaN), laser energy,
and laser spot size, we have removed the sapphire substrate of
AlGaN wafers by LLO [2,14,15] and demonstrated a 275.9-nm
optically pumped VCSEL with AlGaN-based MQWs structure
[2]. LLO reveals the feasibility of separating large-area AlGaN
epilayers from sapphire substrates.
In this study, the material quality and fabrication processes for

UVC VCSELs were optimized further. Concerning the
enhancement of AlGaN crystalline quality, ELOG of the AlN
template was employed, and the epitaxial structure was
improved. The results demonstrate that the AlN template is
relaxed with a DD of ~109 cm−3 and that the AlGaN/AlN SL
layer can effectively reduce the edge DD, resulting in 108 cm−3

for the MQWs. The IQE of the MQWs is as high as 62%. To
further optimize the fabrication processes, chemical mechanical
polishing (CMP) is used to remove the disordered layer gener-
ated on the sample after LLO. The clear observation of stimu-
lated emission at 278.7 nm from the epilayers after LLO and
CMP demonstrates that LLO does not degrade the crystalline
quality of the MQWs. Finally, UVC VCSELs with the lowest

threshold value ever reported were demonstrated.

EXPERIMENTAL SECTION

Growth of AlGaN epilayers
All epilayer structures were grown on a NPSS using an
Advanced Micro-Fabrication Equipment Inc. China (AMEC)
Prismo HiT3 metal-organic chemical vapor deposition
(MOCVD) platform. The structure diagram of the as-grown
epilayers is shown in Fig. 1a. A 4-μm AlN layer was grown on an
NPSS utilizing ELOG. In addition, a 200-nm AlN/Al0.6Ga0.4N SL
layer, a 1.2-μm n-Al0.6Ga0.4N layer, five pairs of Al0.4Ga0.6N
(2 nm)/Al0.5Ga0.5N (6 nm) MQWs, and a 60-nm p-Al0.6Ga0.4N
cladding layer were sequentially epitaxially grown on top of the
AlN template. The n-Al0.6Ga0.4N and SL growth temperatures
and pressures are 1100°C and 40 torr, respectively. The
n-Al0.6Ga0.4N layer has a Si doping concentration of
8 × 1018 cm−3.

Fabrication of UVC VCSELs
As depicted in Fig. 1b, UVC VCSELs were fabricated by first
depositing the bottom HfO2/SiO2 DBR, followed by DBR pat-
terning, sapphire substrate removal by LLO, thickness thinning
and surface smoothing by CMP, and finally deposition of the top
HfO2/SiO2 DBR. Due to the superior adhesion of the adhesive to
the GaN surface, DBR patterning can increase the subsequent
bonding strength. A 248-nm KrF excimer laser with 20-ns pulse
duration and 1-Hz periodic frequency was used in the LLO
procedure. Fig. 1b demonstrates the UVC VCSEL structure. To
investigate additional optical and structural properties of the
epitaxial structure after LLO, a structure denoted A and depicted
in Fig. 2a was fabricated using LLO.

Measurements
X-ray diffraction (XRD) analysis was performed with Cu Kα line
(λ = 1.5406 Å). Transmission electron microscopy (TEM),
scanning electron microscopy (SEM), and atomic force micro-
scopy (AFM) were used to analyze the morphology of the epi-
layers. Photoluminescence (PL) measurements and optical
pumping were performed using a 240-nm laser with 5-ns pulse

Figure 1 (a) Structure diagrams of the as-grown epilayers; (b) UVC VCSEL fabrication processes.
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duration and 20-Hz periodic frequency. A helium cycle cooling
system was used in the temperature-dependent (TD) PL mea-
surements.

RESULTS AND DISCUSSION

Structural and optical properties of the as-grown AlGaN epilayers
Fig. 2b shows the cross-sectional TEM image of the MQWs;
clear boundaries between the well and barrier layers are
observed, indicating a good crystalline quality of the MQWs.
Fig. 3 shows the XRD patterns of the as-grown epilayers. Fig. 3a,
b show (002) and (102) 2θ-ω scans of the epilayers, respectively.
Diffraction peaks of AlN and n-Al0.6Ga0.4N were observed, and
lattice constants for the two layers were estimated, as listed in
Table 1 (details see Section S1 in the Supplementary informa-
tion). The lattice constants of the AlN template are close to the
strain-free ones (a = 0.3112 nm and c = 0.4982 nm), indicating
that the AlN template is almost fully relaxed. The a-lattice
constant of the n-Al0.6Ga0.4N layer is almost equal to that of the
AlN template, suggesting that the n-Al0.6Ga0.4N layer is fully
strained. Screw and edge DDs in the AlN template and the n-
Al0.6Ga0.4N layer are also presented in Table 1. They are esti-
mated from the full width of the half maximum (FWHM) of the
(002) and (102) rocking curves of the two layers [16] (see Section
S1 in the Supplementary information), as demonstrated in
Fig. 3c–f, respectively. The screw DD in the two layers has the
same order of magnitude. However, edge DD in the
n-Al0.6Ga0.4N layer is an order of magnitude lower than that in
the AlN template, attributable to the reduction effect of AlN/
Al0.6Ga0.4N SL on the DDs [8,11,12]. The DDs in the MQWs are
approximately equal to that in the n-Al0.6Ga0.4N layer, with the
IQE expected to be 65%, according to Ref. [9].
Optical properties of the as-grown epilayers were measured by

excitation power-dependent PL and TD PL, respectively, as
shown in Fig. 4. The excitation power-dependent PL was per-
formed at RT and 3.23 K, respectively. At RT, three interference
peaks are observed at 271.00, 274.71, and 277.06 nm (Fig. 4a).
According to the three peak positions, the structure’s thickness is
calculated to be 5.6 μm, close to the designed thickness of
5.5 μm. The emission point is located at 274.71 nm. As illu-
strated in Fig. 4b, the integral intensity varied linearly with
excitation energy. Because of the low defect density in the active
region, it indicates that radiative recombination predominated

in the emission during the measurement [17–19]. Because of the
temperature effect on the bandgap, the emission center shifts to
271.19 nm at 3.23 K, as shown in Fig. 4c. As shown in Fig. 4d,
the integral intensity decreased linearly as the excitation energy
increased below 1 μJ. Nonetheless, when the excitation energy
was greater than 1 μJ, the integral intensity varied sublinearly
with an exponent of 0.68. When the excitation is greater than
1 μJ, Auger recombination dominates the emission, which is
primarily caused by excess carrier injection into the active
region.
The emission center of the as-grown epilayers shifts from 271

to 274 nm as the temperature increases from 3.23 to 300 K (RT),
and three interference peaks are also observed at 271, 274 and
277 nm, as shown in Fig. 4e. As the temperature rises, the three
peak positions become nearly constant, indicating that the
thickness of the epitaxial structure remains constant during the
measurement. Fig. 4f depicts the integral intensity as it varies
with the reciprocal temperature. The activation energy of non-
radiative channels can be obtained by fitting the data to the
Arrhenius formula [20]. The two activation energies, Ea
(4.8 meV) and Eb (72.3 meV), may correspond to point defect
activation and exciton decomposition, respectively. The IQE of
the MQWs can be calculated from the integral intensity ratio
between RT and 3.23 K, assuming the IQE is 100% at 3.23 K.
The estimated IQE is 62%, close to the XRD measurement value.
When compared with reported research results, 85% [21], 69%
[22], 50% [23], 55% [24], 43% [25], and 8% [26], it is a rea-
sonably high value.

Design of UVC VCSEL
The fabrication of the UVC VCSEL began with the deposition of
the bottom DBR and ended with the deposition of the top DBR.
HfO2 and SiO2 are used to make DBRs because their extinction
coefficients are lower than those of other transparent oxides, as
shown in Table 2. At 276 nm, the reflectance of top and boom
DBRs is calculated to be 95.3% and 97.7%, respectively. The
calculated cavity reflective spectrum is shown in Fig. 5a. A single
cavity mode is observed at 280.9 nm. Single-mode emission is
beneficial for communications and other applications. The cal-
culated optical field in a 2λ cavity is shown in Fig. 5b. The active
region perfectly aligns with the field’s antinode, which optimizes
the optical confinement factor. In addition, the interface
between the epilayer and the DBR is at the field node, which may

Figure 2 Structure A (a) and cross section TEM image of the MQWs (b).
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reduce optical scattering loss [14].

LLO process in the UVC VCSEL fabrication

Removing the sapphire substrate by LLO is critical in the UVC
VCSEL fabrication process. As a result, the dielectric DBR
structure is realized. The optimized laser energy density for the
AlGaN wafer is 3.7 J cm−2 pulse−1. Fig. 6a, b show cross-sectional
SEM images of the as-grown epilayers and structure A, respec-
tively. After LLO, the epilayer thickness is 1.36 μm, corre-
sponding to 1.2 μm n-Al0.6Ga0.4N, 40 nm MQWs, and 60 nm p-
Al0.6Ga0.4N layers. The structural thickness variation before
(6 μm) and after (1.36 μm) the LLO process indicates that the
epilayers and sapphire substrate were separated at the interface
between the SL and n-Al0.6Ga0.4N layers. Fig. 7a, b show XRD
patterns of structure A, with a clear diffraction peak of the n-
Al0.6Ga0.4N layer and no diffraction peaks of the SL or AlN
layers. It implies that the SL and AlN layers were removed

Table 1 XRD results of the AlN and n-Al0.6Ga0.4N layers

AlN
(as-grown)

Al0.6Ga0.4N
(as-grown)

Al0.6Ga0.4N
(after CMP)

a (nm) 0.3116 0.3119 0.3147
c (nm) 0.4985 0.5081 0.5038

Screw dislocation
(cm−2) 1.77 × 108 1.62 × 108 3.37 × 108

Edge dislocation
(cm−2) 1.57 × 109 1.06 × 108 2.03 × 108

FWHM (002) ω-scan
(arcsec) 285.48 278.28 397.62

FWHM (102) ω-scan
(arcsec) 417.24 334.80 320.08

Figure 3 XRD patterns of the as-grown AlGaN epilayers: (a) (002) and (b) (102) 2θ-ω scan; (c) (002) and (d) (102) rocking curves of the AlN template;
(e) (002) and (f) (102) rocking curves of the n-Al0.6Ga0.4N layer.
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during the LLO process, which is supported by the SEM results.
The rocking curve’s FWHM is 2376.1 arcsec, 8.5 times greater
than that of the as-grown one. It is due to partial recrystalliza-
tion of AlGaN at the n-Al0.6Ga0.4N surface during the LLO
process. The AlGaN layer was heated by the laser and conse-
quently decomposed during the LLO process. Some products,
including Al, Ga, and N2, reacted at high temperatures, forming
a disordered AlGaN layer that must be removed.

CMP process in the UVC VCSEL fabrication
CMP was used to remove the disordered layer and smooth the
epilayer surface. Structure A has a thickness of 150 nm after
CMP. As shown in Fig. 8, a small surface root-mean-square
(RMS) roughness of 0.96 nm is obtained. A smooth surface is
required to reduce optical scattering loss [14]. The XRD patterns
of structure A after CMP are depicted in Fig. 7c–f, respectively.
The n-Al0.6Ga0.4N layer and the MQWs show diffraction peaks.
Table 1 also includes screw and edge DDs in the n-Al0.6Ga0.4N
layer, as well as lattice constants in the n-Al0.6Ga0.4N layer. Both
screw and edge DDs are in the order of 108 cm−2, indicating that
the disordered layer is removed after the CMP process. The
DDs, on the other hand, are greater than that of the as-grown
epilayer. It is due to the inhomogeneous thickness of the epi-
layers following polishing. Different epilayer thicknesses corre-
spond to different strain relaxations, which increases the
FWHM. The presence of some of the disordered layers on the
sample following CMP may increase the FWHM. The n-Al0.6

Figure 4 Spectra of the as-grown epilayers. Excitation power-dependent PL and the corresponding integral intensity vs. excitation energy in double
logarithmic coordinates. (a, b) At RT; (c, d) at 3.23 K. Normalized spectra of TD PL (e) and the corresponding integral intensity vs. 1/T (f).

Table 2 Refractive indexes and extinction coefficients of transparent oxides

Materials Refractive index Extinction coefficient

SiO2 [27] 1.5 0

HfO2 1.98 7.67 × 10−3

Ti3O5 [28] 2.3 0.2
Ta2O5 [27] 2.4 0.2
TiO2 [29] 2.8 1
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Ga0.4N layer exhibits a significant change in lattice constants.
After CMP, the a-lattice constant of the n-Al0.6Ga0.4N layer in
structure A equals the strain-free one (0.3146 nm, calculated
from Vegard law [30]). It indicates that the n-Al0.6Ga0.4N layer
relaxed during LLO. The c-lattice constant, on the other hand, is
less than the strain-free constant (0.5063 nm). This effect is most
likely caused by Si doping, which lowers the c-lattice constant
[31].

Optical properties of structure A after CMP
The IQE of structure A after CMP was also calculated by
computing the integral intensity ratio between RT and 3.23 K,
yielding 65%, as shown in Fig. 9a. It is nearly identical to the as-
grown one, indicating that the crystalline quality of the active
region does not degrade after LLO and CMP. Excitation power-
dependent PL at RT was used to measure the optical properties
of structure A after CMP. With increased excitation power, a
surface-stimulated emission peak with a linewidth of 3 nm
appears at 278.7 nm, as shown in Fig. 9b, along with sponta-
neous emission with an FWHM of 12 nm. The corresponding
integral intensity as a function of excitation power is also shown
in Fig. 9c, and a clear kink point can be seen at 1.5 μJ pulse−1

when surface-stimulated emission becomes visible. The spec-
trum of structure A before stimulated emission is shown in the
inset of Fig. 9b, and the emission peak was at 280 nm. It is worth
noting that the emission position for the as-grown epilayers

shifts from 274.71 to 280 nm for structure A. The redshift of 85
meV could be due to differences in strain in the MQWs before
and after the substrate was removed. The a-lattice of the barrier
and well layers in as-grown epilayers (structure A) is equal to
that of the AlN template (n-Al0.6Ga0.4N layer). The in-plane
strain in the well layers is then calculated to be −1.41% before
LLO and −0.52% after LLO. It modifies the well layers’ polar-
ization-related QCSE and bandgap. According to Refs. [32,33],
the polarization-related built-in electric field of the well layers is
0.61 MV cm−1 before LLO and 0.70 MV cm−1 after LLO. The
well layers’ corresponding emission energy decreases by 0.18
meV [34], which is far less than the amount of redshift (see
Section S2 in the Supplementary information). The nitride
bandgap is reported to vary with strain, and the variation of the
GaN bandgap with strain has been calculated [35]. Assuming
that the well layers’ bandgap variation with strain is similar to
that of GaN, the bandgap of the well layers is estimated to
decrease by 88.7 meV [35], which is close to the amount of
redshift (see Section S3 in the Supplementary information). It
implies that the redshift is primarily caused by bandgap varia-
tion.
The as-grown epilayers do not exhibit surface-stimulated

emission. The “holes” in the epitaxial structure, as shown in the
red rectangle in Fig. 6a, increase the optical scattering loss. These
holes are caused by ELOG nitride on NPSS. It has also been
reported in numerous publications [10,36,37]. Furthermore,

Figure 6 Cross-sectional SEM images of the as-grown epilayers (a) and structure A before CMP (b).

Figure 5 Calculated cavity reflective spectrum (a) and optical field inside the cavity (b).

ARTICLES SCIENCE CHINA Materials

6 © Science China Press 2023



high DD in the AlN template increases scattering loss. Structure
A, conversely, has a thinner thickness and smoother surfaces
after CMP. It reduces optical absorption loss and increases light
resonance within epilayers. UVC surface stimulated emission at
260 nm from AlGaN MQWs epilayers was also reported by Li
et al. [38]. The epitaxial structure was formed on a sapphire
planar substrate. Light resonance benefits from smooth inter-
faces and surfaces in epitaxial structures.

Measurements of the UVC VCSELs
The optical pumping technique was used to characterize the
optical properties of the UVC VCSELs. Fig. 10 depicts a series of
lasing spectra obtained from various UVC VCSELs. The three
VCSELs are designated as VCSEL-I, VCSEL-II [2], and VCSEL-
III, and in that order, the lasing wavelengths are 277.64, 275.91,
and 276.28 nm, respectively. The entire lasing is a single mode,
which agrees with the cavity reflective spectrum. The corre-
sponding threshold power density is 0.79, 1.21, and

Figure 7 XRD patterns of Al0.6Ga0.4N in structure A. (a) (002) 2θ-ω scan; (b) (002) rocking curve after LLO; (c) (002) and (d) (102) 2θ-ω scan after CMP;
(e) (002) and (f) (102) rocking curves after CMP.

Figure 8 AFM image of the surface of structure A after CMP.
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2.02 MW cm−2, respectively. The linewidth is 0.8 nm. There are
two possible explanations for the different thresholds. First, the
detuning between the gain peak and the cavity mode position of
three different VCSELs varies; the smaller the detuning, the
smaller the threshold. The FWHM of the spontaneous emission
of the three VCSELs at 0.3 J (before lasing) is 7.57, 10.81, and
15.61 nm, respectively. In general, the FWHM is related to the
crystalline quality. The FWHM is increased by crystalline

dislocation, distortion, and defect. As a result, VCSEL-I is
thought to have better crystalline quality, resulting in a lower
lasing threshold.
Compared with other studies, this work demonstrated the

early lasing of VCSEL in the UVC range, as well as a low
threshold power density of 0.79 MW cm−2, as shown in Fig. 11.
It benefits from high IQE AlGaN MQWs with good crystalline
quality. The key processes that do not degrade the crystalline

Figure 9 IQE measurement (a), surface stimulated emission spectra (b), and the corresponding integral emission intensity as a function of excitation power
(c) of structure A after CMP.

Figure 10 Lasing spectra and the corresponding integral emission intensity as a function of excitation energy. (a, b) VCSEL-I; (c, d) VCSEL-II; (e, f) VCSEL-
III.
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quality of the MQWs are LLO and CMP. The cavity design also
improves optical confinement and decreases optical loss.

CONCLUSIONS
An ELOG AlGaN-based epitaxial structure was grown on NPSS.
The XRD and PL measurements exhibited low screw and edge
DDs in the MQWs of ~108 cm−2 with a high IQE of 62%. Our
unique LLO process does not degrade the crystallinity of the
AlGaN MQWs, and UVC surface stimulated emission is
achieved from structure A after CMP. AlGaN-based VCSELs
with lasing at 275.91, 276.28, and 277.64 nm are successfully
demonstrated.
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高质量的AlGaN外延结构和UVC垂直腔面发射激光
器的实现
郑重明1, 王玉坤1, 胡建正2, 郭世平2*, 梅洋1, 龙浩1, 应磊莹1,
郑志威1, 张保平1*

摘要 AlGaN基垂直腔面发射激光器(VCSEL)因其优越的材料性质和
器件优点吸引了很多关注. 然而, 由于材料外延生长和器件制备工艺的
局限, AlGaN基VCSEL制备很困难. 本工作通过侧向外延生长技术制备
了高质量的AlGaN多量子阱(MQWs)结构的外延片, 并通过X射线衍射
(XRD)和光致发光(PL)实验对外延片进行了分析. XRD测量显示, 外延
片中的AlN模板层几乎是弛豫的, 刃位错密度为109 cm−2. 随后, 生长的
AlGaN/AlN超晶格(SL)层被用来减少刃位错密度,使得量子阱中的位错
密度为108 cm−2. 根据PL测试结果, MQWs的内量子效率(IQE)为62%,
且在室温下的发光以辐射复合为主. 通过激光剥离(LLO)和化学机械抛
光(CMP)技术 , 将这些外延片制备成UVC VCSEL. 经过这些工艺 ,
MQWs的晶体质量没有受到影响, 还在抛光之后的表面观察到了UVC
波段的受激辐射 . 这些AlGaN基UVC VCSEL在275.91, 276.28和
277.64 nm实现了激射, 最小激射阈值为0.79 MW cm−2.
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